For each homework assignment, turn in at the beginning of class on the indicated due date. Late assignments will only be accepted with special permission. Write each problem up *very* neatly (LaTeX is preferred). Show all of your work.

Problem 1

Let \(X = \{X_1, \ldots, X_n\} \), where \(X_i = (x_1, \ldots, x_k)^T \), and \(X_i \sim N(\mu, \Sigma) \). Under \(p(\mu) \propto 1 \), we found previously that \(p(\mu|X, \Sigma) \) has a multivariate normal distribution with mean \(\sum_i X_i/N \) and variance matrix \(\Sigma/N \).

Under the prior \(p(\Sigma) \propto |\Sigma|^{-(k+1)/2} \), find \(p(\mu|X) \).
Problem 2

In this problem, you will construct a sampler for fitting a line to data, which has Cauchy innovations.

Part 1
Simulate 1,000 points \((x,y)\), where \((x, y) \sim \text{Cauchy}(0,1)\), with covariance structure
\[
\begin{pmatrix}
1 & 0.8 \\
0.8 & 1
\end{pmatrix}.
\]
Plot the realizations of your simulation.

Part 2
Recall that under the model:
\[y_i = \beta_0 + \beta_1 x_i + \epsilon,\]
where \(\epsilon \sim N(0,\sigma^2)\), we can derive the posterior estimate
\[\beta \sim N((X^T X)^{-1} X^T Y, \sigma^2 (X^T X)^{-1}).\] \hspace{1cm} (1)
Fit a standard regression line of the form \(y = \beta_0 + \beta_1 x\) to the data. Plot the residuals and make a QQ plot to illustrate how poorly the Least Squares fit performs.

Part 3
Under the gamma frailty model, we have
\[\beta \sim N((X^T X)^{-1} X^T Y, \frac{\sigma^2}{\gamma} (X^T X)^{-1}),\]
where \(\gamma \sim \text{Gamma}(a,b)\). Find \(a\) and \(b\) so that \(\beta\) has a Cauchy distribution with shift \((X^T X)^{-1} X^T Y\) and scale \(\sigma^2 (X^T X)^{-1}\).

Problem 3
In problem 2 we obtained some insight on how to sample from a Cauchy regression model. We will further the insight here.

Part 1a
Write out the full conditional distributions for \(\beta\) and \(\phi = 1/\sigma^2\), under the reference priors. (Note: for a given value of \(\gamma\), the full conditional distribution for \(\beta\) should be obvious.)
Part 1b
Write out the full conditional sampling distribution for γ_i, $i = 1, \ldots, N$. Notice that for each sample draw, you used a random γ, so there is a posterior distribution on γ_i for each sample draw.

Part 2
Write out a Gibbs sampling procedure for sampling from ($\beta, \phi = 1/\sigma^2, \gamma_i$). You do not need to implement this, just write out the pseudo code.

Problem 4
Recall that the trace of a matrix A is defined to be the sum of the diagonal elements of A, or equivalently it is the sum of its eigenvalues. Let $tr(A)$ denote the trace of the matrix A.

Part 1
Show that

$$tr(A + B) = tr(A) + tr(B).$$

Part 2
Show that

$$tr(AB) = tr(BA).$$

Problem 5
Let us consider the example in class where measurements of rats weights were measured through time. Letting x_{ij} denote the weight of rat i in week j. For this we assumed the model

$$x_{ij} \sim N(\alpha_i + \beta_i j, \sigma^2 = 1/\phi),$$

which simply specifies a regression model for each individual rat. We further assumed that each rats regression coefficients were modeled through

$$\begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} \sim N(\begin{pmatrix} \alpha_0 \\ \beta_0 \end{pmatrix}, \Sigma).$$

You might interpret (α_0, β_0) as the underlying average population regression coefficients for rats weights. The model also specifies that individuals regression coefficients may not be independent, hence the arbitrary covariance structure Σ. This model is referred to as a random effects model, where the regression coefficients for individual
rats are the random effects. Suppose we want to perform a Bayesian analysis, and for convenience we choose to do a conjugate analysis. The conjugate priors are

\[
\phi \sim \text{Gamma}(a, b) \\
(\alpha_0, \beta_0)^T \sim N(\eta, \Psi) \\
\Sigma^{-1} \sim \text{Wishart}((\rho R)^{-1}, \rho).
\]

Hint: recall
\[
p(\Sigma^{-1}) \propto |\Sigma^{-1}|^{(\rho-2)/2}e^{-\frac{1}{2}tr(\rho R \Sigma^{-1})}.
\]

Derive the full conditional distributions for: \(\phi, (\alpha_0, \beta_0)^T,\) and \(\Sigma^{-1}\).

Problem 6

Let \(X = (x_1, \ldots, x_n)\) and let \(x_i \sim N(\mu = 200, \phi = \frac{1}{2}),\) where \(\phi = 1/\sigma^2\)

Part 1

Under reference priors, write down the full conditional distribution for \(\mu\) and \(\phi\). You don’t need to derive these again, just state what they are.

Part 2

Implement a Gibbs sampler for sampling from the distribution for \((\mu, \phi|X)\), where \(X\) is a 100 simulated data points from the above model. Initialize the sampler at \(\mu_0 = 0\) and \(\phi = 5\). Show the trace plots for both \(\mu\) and \(\phi\). Report the burn-in time and draw histograms for both of the marginal posteriors (after burn-in).

Problem 7

Let \(x = (x_1, \ldots, x_n),\) were \(x_i \sim \text{Bin}(N, p)\). Find the Jeffreys prior for \(p\).