DESIGN FOR COMPUTER EXPERIMENTS
WITH QUALITATIVE AND QUANTITATIVE FACTORS

Xinwei Deng, Ying Hung and C. Devon Lin

Virginia Tech, Rutgers University and Queen’s University

Abstract: We introduce a new class of designs, marginally coupled designs, for computer experiments with both qualitative and quantitative variables. These designs maintain an economic run size with attractive space-filling properties. The design points for quantitative factors form a Latin hypercube design. In addition, for each level of any qualitative factor of a marginally coupled design, the corresponding design points for quantitative factors form a small Latin hypercube design. Existence of the proposed designs is studied. Constructions are provided for various types of designs with qualitative factors.

Key words and phrases: Difference scheme, fold-over design, latin square, mixed level, orthogonal array, resolvable orthogonal array.

1. Introduction

Computer experiments refer to the study of real systems using complex simulation models. They have been widely used as alternatives to physical experiments. Their computational expense often prohibits the naive approach of running the experiment over a dense grid of input configurations. Efficient design is especially important in this context.

Latin hypercube designs (McKay, Beckman, and Conover (1979); Santner, Williams, and Notz (2003); Pang, Li, and Sudjianto (2010)) are widely used in computer experiments. Their popularity is due to the feature that, when projected onto any one dimension, the equally spaced design points ensure that each of the factors has all portions of its range represented. Different variants of Latin hypercube designs have been developed, including orthogonal Latin hypercube designs (Owen (1992); Yu (1998); Steinberg and Lin (2006); Bingham, Sitter, and Tang (2009); Lin, Mukerjee, and Tang (2009); Pang, Liu, and Lin (2009); Sun, Liu, and Lin (2009); Lan et al. (2010)), maximin Latin hypercube designs (Morris and Mitchell (1995); Joseph and Hung (2008); Moon, Dean, and Santner (2011)), nested Latin hypercube designs (Qian (2009); He and Qian (2011)), sliced Latin hypercube designs (Qian and Wu (2009); Qian (2012)), among many others. These designs are primarily used for computer experiments with only
quantitative factors. However, in many problems, qualitative factors occur frequently and play important roles in the studies (Qian, Wu, and Wu (2008); Han et al. (2009); Hung, Joseph, and Melkote (2009)). And, in some applications, a large number or proportion of factors are qualitative. The objective here is to construct a new class of designs, marginally coupled designs, for computer experiments involving both quantitative and qualitative factors.

Throughout, let $D = (D_1, D_2)$ be a design with q qualitative factors and p quantitative factors, where D_1 and D_2 are sub-designs for qualitative and quantitative factors, respectively. A design D is called a marginally coupled design if D_2 is a Latin hypercube design and the rows in D_2 corresponding to each level of any factor in D_1 form a small Latin hypercube design. In this work, we focus on D_1 being an orthogonal array (Hedayat, Sloane, and Stufken (1999)).

For constructing designs of computer experiments with quantitative and qualitative factors, Qian (2012) suggests using sliced Latin hypercube designs for D_2, where the design points in each slice of D_2 correspond to one level combination of the qualitative factors. Here run size increases dramatically with the number of qualitative factors while our designs can accommodate a large number of qualitative factors with an economical run size. As well, they have the following attractive space-filling properties: (1) for each level of any qualitative factor, the corresponding design points of quantitative factors achieve maximum uniformity in any one-dimensional projection, and (2) the design points of quantitative factors possess maximum uniformity in any one-dimensional projection.

The remainder of the paper is organized as follows. Section 2 presents notation, definitions, and an example of marginally coupled designs. Section 3 provides some existence results for the proposed designs. Several construction methods for such designs are given in Section 4. Section 5 concludes the paper with a discussion.

2. Notation, Definitions and an Example

An orthogonal array A of strength t, denoted by $OA(n, s_1 \cdots s_q, t)$, is an $n \times q$ matrix of which the ith column has s_i levels $0, \ldots, s_i - 1$ and, for every $n \times t$ submatrix of A, all possible level combinations appear equally often (Hedayat, Sloane, and Stufken (1999)). If not all s_i’s are equal, an orthogonal array is mixed. We use $OA(n, s_1^{q_1} \cdots s_k^{q_k}, t)$ to represent an orthogonal array in which the first q_1 columns have s_1 levels, the next q_2 columns have s_2 levels, and so on. An $OA(n, s_1^{q_1} \cdots s_k^{q_k}, 2)$ is said to be $(\alpha_1 \times \alpha_2 \times \cdots \times \alpha_k)$-resolvable if, for $1 \leq j \leq k$, its rows can be partitioned into $n/(\alpha_j s_j)$ subarrays $A_1, \ldots, A_{n/(\alpha_j s_j)}$ of $\alpha_j s_j$ rows each such that each of $A_1, \ldots, A_{n/(\alpha_j s_j)}$ is an $OA(\alpha_j s_j, s_1^{q_1} \cdots s_k^{q_k}, 1)$. Note that $\alpha_j s_j$’s are identical for all j’s. If all s_j’s are equal and $\alpha_1 = \cdots = \alpha_k = \alpha$ then an $(\alpha_1 \times \alpha_2 \times \cdots \times \alpha_k)$-resolvable orthogonal array reduces to an α-resolvable orthogonal array. If $\alpha = 1$, the orthogonal array is called completely resolvable.
A Latin hypercube of n runs for p factors is represented by an $n \times p$ matrix of which each column is a random permutation of n equally-spaced levels. For convenience, we take the n levels to be $-\frac{n-1}{2}, -\frac{n-3}{2}, \ldots, \frac{n-3}{2}, \frac{n-1}{2}$. In Qian (2012), a Latin hypercube L of $n = rm$ runs is called a sliced Latin hypercube of r slices if L can be expressed as $L = (L_1^T, \ldots, L_r^T)^T$ where m levels in each column of L_i have exactly one level from each of the m equally-spaced intervals $[-\frac{n}{2} + (j-1)r, -\frac{n}{2} + jr] : 1 \leq j \leq m$. Given an $n \times p$ Latin hypercube $L = (l_{ij})$, a Latin hypercube design $X = (x_{ij})$ is generated via

$$x_{ij} = \frac{l_{ij} + (n-1)/2 + u_{ij}}{n}, \quad 1 \leq i \leq n, 1 \leq j \leq p,$$

where u_{ij}'s are independent random numbers from $[0, 1)$. We say L is a Latin hypercube corresponding to X. A D_2 in a marginally coupled design $D = (D_1, D_2)$ is a sliced Latin hypercube design with respect to each column of D_1.

Example 1. Design $D = (D_1, D_2)$ in Table 1 is a marginally coupled design of nine runs for two quantitative variables (x_1, x_2) and two qualitative factors (z_1, z_2) each at three levels. Figure 1 displays the scatter plots of x_1 versus x_2. Rows of D_2 corresponding to levels 0, 1, 2 of z_1 or z_2 are represented by \times, \circ, and \ast. Projected onto x_1 or x_2, three points represented by \times or \circ or \ast are located in each of three intervals $[0, 1/3), [1/3, 2/3), [2/3, 1)$.

3. Existence of Marginally Coupled Designs

This section provides some results on the existence of marginally coupled designs. For a given $n \times q$ design D_1, we say a marginally coupled design exists if
Table 1. A marginally coupled design $D = (D_1, D_2)$.

<table>
<thead>
<tr>
<th>D_1</th>
<th>D_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0.311</td>
</tr>
<tr>
<td>0 1</td>
<td>0.415</td>
</tr>
<tr>
<td>0 2</td>
<td>0.878</td>
</tr>
<tr>
<td>1 0</td>
<td>0.481</td>
</tr>
<tr>
<td>1 1</td>
<td>0.752</td>
</tr>
<tr>
<td>1 2</td>
<td>0.212</td>
</tr>
<tr>
<td>2 0</td>
<td>0.950</td>
</tr>
<tr>
<td>2 1</td>
<td>0.078</td>
</tr>
<tr>
<td>2 2</td>
<td>0.601</td>
</tr>
</tbody>
</table>

there exists an $n \times p$ design D_2 with $p > 0$ such that $D = (D_1, D_2)$ is a marginally coupled design.

Proposition 1. Given $D_1 = OA(n, s^q, 2)$, a marginally coupled design exists if and only if D_1 is a completely resolvable orthogonal array.

Proof. We first show if D_1 is a completely resolvable orthogonal array, a marginally coupled design exists. A completely resolvable orthogonal array can be expressed as $D_1 = (A_1^T, \ldots, A_m^T)^T$ such that each A_i is an OA$(s, s^q, 1)$ for $1 \leq i \leq m = n/s$. Let $d = (d_j)$ be the column vector of length n with $d_j = (j - 1 + u_j)/n$ where u_j’s are independent numbers from $[0, 1)$, $1 \leq j \leq n$. Now construct an $n \times p$ design D_2 as follows. Write $d = (b_1^T, \ldots, b_m^T)^T$ where b_i is the $((i - 1)s + 1, \ldots, is)$th entries of d, $1 \leq i \leq m = n/s$. Obtain each column of D_2 by randomly permuting the b_i’s of d and/or randomly permuting the entries in one or more of b_i’s. Then (D_1, D_2) forms a marginally coupled design by definition. Now suppose that D_2 has p columns with the jth column denoted by $D_2^{(j)}$. Then for each $D_2^{(j)}$, $1 \leq j \leq p$, and for $0 \leq i \leq m - 1$, the rows of D_1 corresponding to the s elements of $D_2^{(j)}$ in the interval $[i/m, (i + 1)/m)$ must form an OA$(s, s^q, 1)$. Otherwise, there would be a level, say k, in a column w of D_1 such that the entries in $D_2^{(j)}$ corresponding to the level k contain more than one element from $[i/m, (i + 1)/m)$. Then, for the column w of D_1, D_2 is not a sliced Latin hypercube design. This completes the proof.

Proposition 2. Given $D_1 = OA(n, s_1^{q_1} s_2^{q_2}, 2)$ with $s_1 = \alpha_2 s_2$, a marginally coupled design exists if and only if D_1 is a $(1 \times \alpha_2)$-resolvable orthogonal array that can be expressed as

$$
\begin{pmatrix}
A_{11} & A_{12} \\
\vdots & \vdots \\
A_{m1} & A_{m2}
\end{pmatrix}
$$

(3.1)
such that \((A_{i1}, A_{i2})\) is an OA\((s_1, s_1^q, s_2^q, 1)\), where \(m = n/s_1\), and for \(1 \leq i \leq m\), the \(A_{i2}\) is completely resolvable.

Proof. We first show that, for a \(D_1\) in the proposition, a marginally coupled design exists. Let \(d = (d_j)\) be the column vector of length \(n\) with \(d_j = (j - 1 + u_j)/n\), where \(u_j\)'s are independent numbers from \([0,1)\), \(1 \leq j \leq n\). Now construct an \(n \times p\) design \(D_2\) as follows. Write \(d = (b_1^T, \ldots, b_m^T)^T\) where \(b_i\) is the \{(i - 1)s_1 + 1, \ldots, is\}th entries of \(d\), \(1 \leq i \leq m = n/s\). Set each column of \(D_2\) to a column obtained by randomly permuting the \(b_i\)'s of \(d\) and/or randomly permuting the entries in one or more of \(b_i\)'s. Then \((D_1, D_2)\) forms a marginally coupled design by definition. Now we show that (a) the first \(q_1\) columns in \(D_1\) are a completely resolvable orthogonal array, and (b) the rows of each \(A_{i2}\) in \((6.10)\) can be partitioned into \(\alpha_2\) subarrays \(B_1, \ldots, B_{\alpha_2}\) of \(s_2\) rows each such that each of \(B_1, \ldots, B_{\alpha_2}\) is an OA\((s_2, s_2^q, 1)\). Part (a) uses the arguments in the proof of Proposition 1 with \(q = q_1\) and \(s = s_1\). We turn to part (b). Suppose \(D_2\) has \(p\) columns with the \(j\)th column denoted by \(D_2^{(j)}\). Then for each \(D_2^{(j)}\), \(1 \leq j \leq p\), and \(0 \leq i \leq m - 1\), the rows of \(D_1\) corresponding to the \(s_1\) elements of \(D_2^{(j)}\) in the interval \([i/m, (i + 1)/m)\) must be \(A_{i1}\) for an \(h\) in \(\{1, \ldots, m\}\). For the given \(i\) and \(h\), and for \(g = 0, \ldots, \alpha_2 - 1\), the rows of \(A_{i2}\) corresponding to the \(s_2\) elements of \(D_2^{(j)}\) in the interval \([i/m + g/(\alpha_2), i/m + (g + 1)/(\alpha_2))\) must form an OA\((s_2, s_2^q, 1)\). Otherwise, there would be a level, say \(k\), in a column \(w\) of \((A_{i1}^T, \ldots, A_{i2}^T)^T\) such that the entries in \(D_2^{(j)}\) corresponding to the level \(k\) contain more than one element from \([i/m + g/(\alpha_2), i/m + (g + 1)/(\alpha_2))\). Thus, for the column \(w\) in \((A_{i1}^T, \ldots, A_{i2}^T)^T\), \(D_2\) is not a sliced Latin hypercube design. This completes the proof.

A lemma of Suen (1989) shows that the maximum number of columns in an \(n/(sr)\)-resolvable \(s\)-level orthogonal array of \(n\) runs is \((n - r)/(s - 1)\). For a completely resolvable \(s\)-level orthogonal array, we have \(r = n/s\), and thus the maximum number of columns in a completely resolvable \(s\)-level orthogonal array is \(n/s\).

Lemma 1. If a resolvable OA\((n, s^q, 2)\) can be partitioned into \(r\) OA\((n/r, s^q, 1)\)'s, then \(q \leq (n - r)/(s - 1)\).

Corollary 1. Let \(q^*\) be the maximum value of \(q\) such that a marginally coupled design \(D = (D_1, D_2)\) with \(D_1 = OA(n, s^q, 2)\) exists. We have \(q^* \leq n/s\).

Corollary 2 provides a result on the maximum number of columns in a two-level orthogonal array of \(n\) runs where \(n\) is a multiple of 4 for which a marginally coupled design exists.
Corollary 2. Let q^* be the maximum value of q such that a marginally coupled design $D = (D_1, D_2)$ with $D_1 = OA(4\lambda, 2^q, 2)$ exists, where λ is an integer such that a Hadamard matrix of order 2λ exists. We have $q^* = 2\lambda$.

Proof. By Proposition 1, $D_1 = OA(4\lambda, 2^q, 2)$ is completely resolvable. Such D_1’s are fold-over designs. When the two levels are represented by 1 and -1, a fold-over design can be represented by $(A^T, -A^T)^T$ for some matrix A. Let A be a Hadamard matrix of order 2λ (Hedayat, Sloane, and Stufken (1999)). Then the maximum number of columns in a fold-over orthogonal array of 4λ runs is 2λ. This completes the proof.

4. Construction of Marginally Coupled Designs

We develop several procedures for constructing marginally coupled designs $D = (D_1, D_2)$ when D_1’s are s-level orthogonal arrays of s^2 and λs^2 runs, mixed orthogonal arrays, and two-level orthogonal arrays, respectively.

4.1. Construction for D_1 being s-level orthogonal arrays of s^2 runs

Suppose an $OA(s^2, s^k, 2)$, say A, is available and D_1 for qualitative factors is obtained by randomly taking q columns from A. Let $A \backslash D_1$ be the complement of D_1 within A. Construction 1 below is based on the idea in Tang (1993), originally proposed for constructing orthogonal array-based Latin hypercubes.

Construction 1. Obtain a design, B, by randomly taking p columns from $A \backslash D_1$, where $q+p \leq k$. For each column of B, replace the s positions having level $i−1$ by a random permutation of $\{(i−1)s+1\}−(s^2+1)/2, \ldots, \{(i−1)s+s\}−(s^2+1)/2$, for $1 \leq i \leq s$. Denote the resulting design by L and obtain a Latin hypercube design D_2 based on L via (2.1).

Proposition 3. Let $D_1 = OA(s^2, s^q, 2)$. Design $D = (D_1, D_2)$ is a marginally coupled design, where D_2 is obtained by Construction 1.

Proposition 3 can be readily verified by noting the two-dimensional projection property of an orthogonal array.

Example 2. Taking s in Construction 1 to be 3, 4, 5, 7, 8, 9, we have $OA(9, 3^4, 2)$, $OA(16, 4^5, 2)$, $OA(25, 5^6, 2)$, $OA(49, 7^8, 2)$, $OA(64, 8^9, 2)$ and $OA(81, 9^{10}, 2)$, which provide designs of computer experiments of s^2 runs for q qualitative variables and p quantitative variables, where $p + q \leq s + 1$.

4.2. Constructions for D_1 being s-level orthogonal arrays of λs^2 runs

This section introduces a method for constructing marginally coupled designs with D_1 being s-level orthogonal arrays of $n = \lambda s^2$ runs. The approach,
Table 2. The s, λ and k such that an $OA(\lambda s^2, s^k(\lambda s), 2)$ exists and $k \neq \lambda s$, $s \geq 3$, $\lambda s^2 \leq 100$.

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>3</th>
<th>5</th>
<th>4</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>k</td>
<td>9</td>
<td>11</td>
<td>7</td>
<td>8</td>
<td>16</td>
<td>11</td>
</tr>
</tbody>
</table>

Construction 2 below, uses mixed orthogonal arrays $OA(\lambda s^2, s^k(\lambda s), 2)$. Suppose an $OA(\lambda s^2, s^k(\lambda s), 2)$, denoted by A, is available and D_1 for qualitative factors is obtained by randomly taking q columns from the first k columns of A, where λ is a positive integer and $q \leq k$.

Construction 2. Denote the last column of A by a. For $1 \leq j \leq p$, let π_j be a random permutation of $\{0, \ldots, \lambda s - 1\}$ and $\pi_j(i)$ be the ith entry of π_j. Replace the s positions having level $\pi_j(i)$ in a by a random permutation of $\{(i - 1)s + 1\} - (\lambda s^2 + 1)/2, \ldots, \{(i - 1)s + s\} - (\lambda s^2 + 1)/2$, for $1 \leq i \leq \lambda s$. Denote the resulting design by L and obtain a Latin hypercube design D_2 based on L via (2.1).

Proposition 4. Let $D_1 = OA(\lambda s^2, s^q, 2)$. Design $D = (D_1, D_2)$ with D_2 in Construction 2 is a marginally coupled design.

Analogous to Proposition 3, Proposition 4 is the consequence of the two-dimensional projection property of an orthogonal array. The website Sloane (2014) lists $OA(\lambda s^2, s^k(\lambda s), 2)$ with $\lambda s^2 \leq 100$. For these orthogonal arrays, we have $k = \lambda s$ for s being a prime or prime power except for the cases in Table 2 and the cases having $(s = 2$, odd $\lambda, k = 2)$.

4.3. Construction for D_1 being mixed orthogonal arrays

Mixed orthogonal arrays were constructed via small mixed orthogonal arrays and difference schemes in Wang and Wu (1991), Hedayat, Pu, and Stufken (1992), and Dey and Midha (1996), among others. A general formulation is provided in Theorem 9.15 in Hedayat, Sloane, and Stufken (1999). A slightly different version of this formulation is stated in Lemma 2.

Lemma 2. Let $B = (B_1 \cdots B_v)$ be an $OA(n, s_1^{k_1} \cdots s_v^{k_v}, 2)$, where B_j is the orthogonal array for k_j factors with s_j levels. If, for some u, there are difference schemes $D(u, c_j, s_j)$ (of strength 2), denoted by $D(j)$, for $1 \leq j \leq v$, then the design

\[A = (D(1) \odot B_1, \cdots, D(v) \odot B_v), \]

is an $OA(nu, s_1^{k_1c_1} \cdots s_v^{k_v c_v}, 2)$, where $X \odot Y = (x_{ij} * Y)$ stands for the Kronecker product of an $u \times c$ matrix $X = (x_{ij})$ and an $n \times k$ matrix $Y = (y_{rs})$ with $x_{ij} * Y$
being the matrix with entries $x_{ij} \ast y_{rs}$ and the binary operation \ast representing addition.

Let M be the Latin hypercube corresponding to D_2 in a marginally coupled design $D = (D_1, D_2)$. For convenience we call M a marginally sliced Latin hypercube for D_1. The following method is proposed to construct marginally coupled designs when $D_1 = A$ in (4.1).

Construction 3. Let $C = (c_{ij})$ be a $u \times f$ matrix with $c_{ij} = \pm 1$, H be a $u \times (pf)$ Latin hypercube, and M be a marginally sliced Latin hypercube for the $B = OA(n, s_1^{k_1} \cdots s_v^{k_v}, 2)$ in Lemma 2. Obtain an $(nu) \times (pf)$ matrix $L = C \otimes M + nH \otimes 1_n$, where \otimes represents the Kronecker product and 1_n is a column of all 1’s, and further obtain a Latin hypercube design D_2 based on L via (2.1).

Construction 3 provides a way to construct marginally coupled designs for mixed orthogonal arrays of the form (4.1). A precise result is given in Proposition 5. Lemmas 3 and 4 are used to show Proposition 5. The proof of each lemma is straightforward and thus is omitted.

Lemma 3. If M is a marginally sliced Latin hypercube for an $OA(n, s_1^{k_1} \cdots s_v^{k_v}, 2)$, so is $-M$.

Lemma 4. If M is a marginally sliced Latin hypercube for the $B = (B_1, \cdots, B_v)$ in Lemma 2, M is a marginally sliced Latin hypercube for $(a_1 \odot B_1, \cdots, a_v \odot B_v)$ for all $a_i \in \{0, \ldots, s_i - 1\}$ and $1 \leq i \leq v$.

Proposition 5. Let D_1 be A in (4.1). Design $D = (D_1, D_2)$ with D_2 in Construction 3 is a marginally coupled design.

Proof. To prove Proposition 5, we need to show that L in Construction 3 is a marginally sliced Latin hypercube for A in (4.1). First, L is a Latin hypercube by verifying that each column of L has levels $-(nu - 1)/2, \ldots, (nu - 1)/2$. Second, we show that for each column of L, the entries corresponding to a level in any column of A with s_i levels have exactly one value from each of the nu/s_i intervals

$$
\Phi_i = \left\{\left\{-\frac{nu}{2} + (j - 1)s_i, -\frac{nu}{2} + js_i\right\} : 1 \leq j \leq \frac{nu}{s_i}\right\}. \quad (4.2)
$$

Without loss of generality, consider the first column l_1 of L. Here $l_1 = c_1 \otimes m_1 + nh_1 \otimes 1_n$, where c_1, m_1 and h_1 are the first column of C, M, and H, respectively. Now consider any column a of A and suppose $a = d \odot b$ where d is a column from $D(i)$ in (4.1) and b is a column from B_i in (4.1). Let c_{1j} and d_{j} be the jth entry of c_1 and d, respectively. By Lemmas 3 and 4, for the column $c_{1j} \otimes m_1$, the entries corresponding to a level in $d_{j} \otimes b$ with s_i levels have exactly one value from each
of the \(n/s_i \) intervals \(\phi_i = \{ \{-n/2 + (j-1)s_i, -n/2 + js_i\} : 1 \leq j \leq n/s_i \} \). Let \(\omega = \{ -(u-1)/2, -(u-3)/2, \ldots, (u-3)/2, (u-1)/2 \} \). Then for \(l_1 \), the entries corresponding to a level in \(a \) with \(s_i \) levels have exactly one value from each of the intervals

\[
\{n\omega_j \phi_i : 1 \leq j \leq u\},
\]

where \(n\omega_j \phi_i \) represents the intervals whose lower bounds and upper bounds are obtained by multiplying the lower bound and upper bound of each interval in \(\phi_i \) by \(n\omega_j \). It is straightforward to verify that the intervals in (4.3) are identical to \(\Phi_i \) in (4.2) and thus we complete the proof.

Example 3. Consider a design \(A = OA(32, 2^8 4^2, 2) \) constructed as in Lemma 2 using

\[
B = \begin{pmatrix}
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 2 \\
1 & 0 & 2 \\
0 & 1 & 3 \\
1 & 0 & 3 \\
\end{pmatrix}, \quad D(1) = \begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1 \\
\end{pmatrix}, \quad \text{and } D(2) = \begin{pmatrix}
0 & 0 \\
0 & 1 \\
0 & 2 \\
0 & 3 \\
\end{pmatrix}.
\]

A marginally sliced Latin hypercube for \(B \) is

\[
M = \frac{1}{2} \begin{pmatrix}
-5 & 1 & -7 & -1 & 3 \\
3 & -3 & 7 & 7 & -3 \\
1 & -1 & 5 & 5 & -1 \\
-7 & 3 & -5 & -3 & 1 \\
-1 & 5 & -1 & -5 & 5 \\
7 & -7 & 1 & 1 & -7 \\
5 & -5 & 3 & 3 & -5 \\
-3 & 7 & -3 & -7 & 7 \\
\end{pmatrix}.
\]

By choosing \(C = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
\end{pmatrix} \),

and any \(4 \times 20 \) Latin hypercube \(H \), the proposed procedure provides a \(32 \times 20 \) marginally sliced Latin hypercube for \(D_1 = A \).

4.4. Construction for \(D_1 \) being unreplicated or replicated \(s \)-level orthogonal arrays

We introduce a construction for marginally coupled designs of \(n \) runs when the \(D_1 \)'s are unreplicated or replicated \(s \)-level orthogonal arrays and the \(D_2 \)'s have \(s \) slices with respect to each column of \(D_1 \), where \(n \) is a multiple of \(s^2 \). The advantage here over Construction 1 is that Construction 1 works for \(p \leq s + 1 - q \).
while this method works for any value of p. The gain from Construction 1 is that columns in D_2 have two-dimensional stratification. This method is different from those in Section 4.2 in that D_1’s provided by the latter are not replicated.

Let W_1, \ldots, W_q be mutually orthogonal Latin squares (Hedayat, Sloane, and Stufken (1999)) of order s with symbols $0, \ldots, s - 1$. Two Latin squares are called orthogonal if when one Latin square is superimposed upon the other, every ordered pair of variables occurs exactly once in the resulting square. If we wish to have p columns in D_2, the following procedure is proposed.

I. For $1 \leq i \leq q$, let $W_i(j, k)$ be the (j, k)th entry of W_i. For $1 \leq r \leq s$, let $(\zeta_{(r-1)s+1}, \ldots, \zeta_{rs})$ be the (j, k)’s such that $W_i(j, k) = r - 1$, and let $\zeta = (\zeta_1, \ldots, \zeta_s)$. Obtain an $s^2 \times q$ orthogonal array H by letting its (t, i)th entry be $W_i(\zeta_i)$. If n/s^2 is greater than 1, for each row of H, add $n/s^2 - 1$ replications of that row and denote the resulting design by D_1. Otherwise, let $D_1 = H$.

II. For $1 \leq i, j \leq s$, take $\xi_{ij} = \{(t - 1)s^2 + (i - 1)s + j - (n + 1)/2 : 1 \leq t \leq n/s^2\}$. Obtain an $n \times p$ array L whose kth column is constructed as follows. Let $\alpha = (\alpha_1, \ldots, \alpha_s)$ and $\beta = (\beta_1, \ldots, \beta_s)$ be two independent random permutations of $\{1, \ldots, s\}$, and $\xi_{\alpha_i\beta_j}$ be a random permutation of the elements in $\xi_{\alpha_i\beta_j}$. For $1 \leq k \leq p$, the kth column of L is obtained by stacking $\xi_{\alpha_i\beta_j}$’s row by row where $\alpha_i\beta_j$’s are in the order $\alpha_1\beta_1, \ldots, \alpha_s\beta_1, \alpha_1\beta_2, \ldots, \alpha_s\beta_2, \ldots, \alpha_1\beta_s, \ldots, \alpha_s\beta_s$. Obtain D_2 based on L via (2.1).

Proposition 6. Let q be the integer such that there exist q mutually orthogonal Latin squares of order s. For the D_1 and D_2 constructed above, we have that

(i) design D_1 is an unreplicated $OA(s^2, s, 2)$ when $n = s^2$ or a replicated $OA(s^2, s^2, 2)$ of λ replicates when $n = \lambda s^2$ for an integer $\lambda > 1$, and

(ii) $D = (D_1, D_2)$ is a marginally coupled design.

We sketch a proof. Part (i) of Proposition 6 follows from the definition of mutually orthogonal Latin squares. For part (ii), note that for $1 \leq j \leq s$, $\xi_{1j}, \ldots, \xi_{sj}$ forms a slice of a Latin hypercube of n runs and s slices. Part (ii) follows because, for each column of L, the row entries corresponding to each level in each column of D_1 are $\xi_{1j}, \ldots, \xi_{sj}$ for certain j.

Example 4. Take $n = 16$, $s = 4$, and $p = 9$. There are three mutually orthogonal Latin squares. A marginally coupled design given by the above procedure for D_1 being an unreplicated $OA(16, 4^3, 2)$ is given in Table 3. We took $p = 9$ in this example but the approach works for any value of p.

Table 3. Designs D_1 and D_2 in Example 4.

<table>
<thead>
<tr>
<th>D_1</th>
<th>D_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0.684 0.422 0.854 0.940 0.483 0.822 0.123 0.379 0.035</td>
</tr>
<tr>
<td>0 3 2</td>
<td>0.913 0.682 0.316 0.226 0.698 0.624 0.851 0.671 0.274</td>
</tr>
<tr>
<td>0 1 3</td>
<td>0.384 0.914 0.109 0.466 0.977 0.397 0.807 0.149 0.316</td>
</tr>
<tr>
<td>0 2 1</td>
<td>0.164 0.125 0.906 0.903 0.397 0.876 0.123 0.379 0.035</td>
</tr>
<tr>
<td>1 1 1</td>
<td>0.617 0.349 0.913 0.682 0.316 0.226 0.698 0.624 0.851</td>
</tr>
<tr>
<td>1 2 3</td>
<td>0.831 0.620 0.183 0.687 0.519 0.371 0.161 0.527 0.035</td>
</tr>
<tr>
<td>1 0 2</td>
<td>0.327 0.824 0.658 0.641 0.136 0.310 0.670 0.823 0.851</td>
</tr>
<tr>
<td>1 3 0</td>
<td>0.083 0.079 0.158 0.425 0.892 0.019 0.418 0.116 0.573</td>
</tr>
<tr>
<td>2 2 2</td>
<td>0.550 0.481 0.990 0.796 0.290 0.889 0.026 0.310 0.167</td>
</tr>
<tr>
<td>2 1 0</td>
<td>0.784 0.701 0.470 0.006 0.503 0.663 0.796 0.503 0.399</td>
</tr>
<tr>
<td>2 3 1</td>
<td>0.397 0.914 0.556 0.413 0.371 0.576 0.876 0.768 0.851</td>
</tr>
<tr>
<td>2 0 3</td>
<td>0.164 0.125 0.109 0.466 0.977 0.099 0.363 0.161 0.527</td>
</tr>
<tr>
<td>3 3 3</td>
<td>0.703 0.294 0.767 0.863 0.322 0.997 0.210 0.454 0.238</td>
</tr>
<tr>
<td>3 0 1</td>
<td>0.999 0.539 0.304 0.101 0.620 0.741 0.997 0.699 0.465</td>
</tr>
<tr>
<td>3 2 0</td>
<td>0.445 0.791 0.556 0.616 0.104 0.473 0.705 0.996 0.976</td>
</tr>
<tr>
<td>3 1 2</td>
<td>0.196 0.040 0.035 0.325 0.854 0.244 0.473 0.204 0.713</td>
</tr>
</tbody>
</table>

4.5. Construction for D_1 being two-level orthogonal arrays

This section presents a method for constructing marginally coupled designs for D_1 being two-level orthogonal arrays. It extends the method in Lin et al. (2010) that introduced a general approach for constructing designs for computer experiments. For convenience, we use $-1, 1$ to represent two levels in an orthogonal array. Let $A = (a_{ij})$ be an $n_1 \times m_1$ matrix with $a_{ij} = \pm 1$, $B = (b_{ij})$ be an $n_2 \times m_2$ Latin hypercube, $C = (c_{ij})$ be an $n_1 \times m_1$ Latin hypercube, and $H = (h_{ij})$ be an $n_2 \times m_2$ matrix with $h_{ij} = \pm 1$. Lin et al. (2010) consider the design

$$L = A \otimes B + n_2 C \otimes H. \tag{4.4}$$

Lemma 5 from Lin et al. (2010) provides the conditions for L in (4.4) to be a Latin hypercube.

Lemma 5. Design L in (4.4) is a Latin hypercube if at least one of (a) and (b) is true:

(a) A and C satisfy that for any i, if p and p' are such that $c_{pi} = -c_{p'i}$, then $a_{pi} = a_{p'i}$;

(b) B and H satisfy that for any j, if q and q' are such that $b_{qj} = -b_{q'j}$, then $h_{qj} = h_{q'j}$.

Proposition 7. Suppose that $D_0 = (E, F)$ is a marginally coupled design and B is the corresponding Latin hypercube of F, where E is an $n_2 \times q_0$ array and
is a column of \(\{ \} \) is a permutation of \(\{ \} \) forms a sliced Latin hypercube of two slices. This completes the proof.

Proof. Because \(D_0 = (E, F) \) is a marginally coupled design, for each column of \(E, B \) forms a sliced Latin hypercube of two slices. Let \(\omega_{k1} = \{ i : e_{ik} = 1 \} \) and \(\omega_{k2} = \{ i : e_{ik} = -1 \} \), where \(e_{ik} \) is the \((i,k)\)th element of \(E, 1 \leq k \leq q_0 \). Then for \(1 \leq j \leq m_2, \) both \(\{ [b_{ij} + (n_2 + 1)/2] : i \in \omega_{k1} \} \) and \(\{ [b_{ij} + (n_2 + 1)/2] : i \in \omega_{k1} \} \) are a permutation of \(\{1, \ldots, n_2/2\} \), where \([x] \) is the smallest integer not less than \(x \). Similarly, both \(\{ [b_{ij} + (n_2 + 1)/2] : i \in \omega_{k2} \} \) and \(\{ [b_{ij} + (n_2 + 1)/2] : i \in \omega_{k2} \} \) are a permutation of \(\{1, \ldots, n_2/2\} \). It is easy to verify that for \(1 \leq j' \leq m_1 \) and \(1 \leq j \leq m_2, \) \(\{ [(a_{ij'0}b_{ij} + n_2c_{ij'}h_{ij}) + (n_1n_2 + 1)/2] : i \in \omega_{k1}, \} \) \(\leq \omega \leq \omega_{k1} \) is a permutation of \(\{1, \ldots, (n_1 + 1)/2\} \) \(= 1 \), \(\ldots, \{1, \ldots, n_2/2\} \) \(= 1 \), \(\ldots, \{1, \ldots, (n_1 + 1)/2\} \). Similarly, \(\{ [(a_{ij'0}b_{ij} + n_2c_{ij'}h_{ij}) + (n_1n_2 + 1)/2] : i \in \omega_{k2} \} \) is a permutation of \(\{1, \ldots, (n_1 + 1)/2\} \). Thus for each column of \(D_1 = A \otimes E, \) \(L \) forms a sliced Latin hypercube of two slices. This completes the proof.

Analogous to Theorem 1 in Lin et al. (2010), an orthogonal \(D_2 \) in Proposition 7 can be obtained by taking (1) \(A, B, C \) and \(H \) orthogonal, (2) \(A^T C = 0 \) or \(B^T H = 0 \), and (3) the \(u_{ij} \)'s in (2010) are a constant between 0 and 1.

Example 5. Let

\[
A = \begin{pmatrix}
1 & 1 \\
1 & -1 \\
1 & 1 \\
1 & -1
\end{pmatrix}, \\
B = \frac{1}{2} \begin{pmatrix}
-3 & -1 & 1 & 3 \\
3 & 1 & -3 & -1 \\
-1 & -3 & 3 & 1 \\
1 & 3 & -1 & -3
\end{pmatrix},
\]

\[
C = \frac{1}{2} \begin{pmatrix}
1 & 3 \\
3 & 1 \\
1 & -3 \\
-3 & 1
\end{pmatrix}, \text{ and } H = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{pmatrix}.
\]

Design \(B \) is a marginally sliced Latin hypercube for

\[
E = \begin{pmatrix}
1 & 1 \\
-1 & 1 \\
-1 & -1 \\
1 & -1
\end{pmatrix}.
\]
By Proposition 7, design \(D = (D_1, D_2) \) with \(D_1 = A \otimes E \) and \(D_2 \) based on \(L \) in \((4.4)\) via \((2.1)\) is a marginally coupled design. If instead we choose both \(B \) and \(H \) to be orthogonal and let \(u_{ij} \) in \((2.1)\) be a constant between 0 and 1, then the resulting \(D_2 \) is orthogonal.

Proposition 7 provides a way to construct marginally coupled designs when \(D_1 \) is a fold-over orthogonal array of \(2^k \) runs and \(2^{k-1} \) columns. To explain this, let \(D^{(k)} = (D_1^{(k)}, D_2^{(k)}) \) be such a marginally coupled design for a given \(k \). For \(k = 2 \), the design with \(D_1^{(2)} \) and \(D_2^{(2)} \) being \(E \) and \(B \) in Example 5 is a marginally coupled design. For \(k \geq 3 \), the design with \(D_1^{(k)} = A \otimes D_1^{(k-1)} \) and \(D_2^{(k)} = A \otimes D_2^{(k-1)} + 2^{k-1} C \otimes H \), where \(A = ((1, 1)^T, (1, -1)^T) \), \(C \) is a \(2 \times 2 \) Latin hypercube, and \(H \) is a matrix of all 1’s of the same size as \(D_2^{(k-1)} \), is a marginally coupled design. The design \(D_1^{(k)} \) is a fold-over orthogonal array of \(2^k \) runs and \(2^{k-1} \) factors.

5. Conclusions and Discussion

We introduce marginally coupled designs to accommodate a large number of qualitative factors in computer experiments with both qualitative and quantitative factors. Construction methods are given for various types of designs for qualitative factors. The existence of such designs is studied when design \(D_1 \) for qualitative factors are \(s \)-level orthogonal arrays and \(OA(n, s_1^{q_1} (\lambda s_1)^{q_2}, 2) \). Although completely solving the existence issue for general orthogonal arrays is likely to be quite nontrivial, it would be possible to obtain some useful general results. We do not dwell on this here. An important future research direction is the extension of marginally coupled designs with certain optimal criteria. For example, the proposed designs are space-filling in one-dimension, but there is no guarantee that the designs are space-filling in higher dimensions. Additional criteria such as orthogonality or maximin distance (Johnson, Moore, and Ylvisaker (1990); Yang et al. (2013); Huang, Yang, and Liu (2014); Ba, Brenneman, and Myers (2014)) can be used to further enhance space-filling properties. Another direction is to extend marginally coupled designs to allow the design for quantitative factors to possess space-filling property with respect to any two columns of the design for qualitative factors. One possibility is that, for each level combination of any two columns of the design for qualitative factors, the corresponding design points for quantitative factors form a Latin hypercube design.

Acknowledgement

Deng and Hung are supported by the National Science Foundation. Lin is supported by the Natural Sciences and Engineering Research Council of Canada.
We are grateful to an associate editor and the referees for constructive comments that have helped improve the article significantly.

References

Department of Statistics, Virginia Tech, 211 Hutcheson Hall, Blacksburg, VA 24061, USA.
E-mail: xdeng@vt.edu

Department of Statistics, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA.
E-mail: yhung@stat.rutgers.edu

Department of Mathematics and Statistics, Queen's University, Jeffery Hall, University Ave., Kingston, Canada.
E-mail: cdlin@mast.queensu.ca

(Received December 2013; accepted October 2014)